Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Glass, Jennifer B (Ed.)ABSTRACT Azospirillum brasilenseis plant-growth promoting rhizobacteria that produces the phytohormone indole-3-acetic acid (IAA) to induce changes in plant root architecture. The major pathway for IAA biosynthesis inA. brasilenseconverts tryptophan into indole-3-pyruvic acid (I3P) and then, through the rate-limiting enzyme, indole-3-pyruvate decarboxylase (IpdC), into IAA. Here, we characterize the potential role for IAA biosynthesis in the physiology of these bacteria by characterizing the expression pattern of theipdCpromoter, analyzing anA. brasilense ipdCmutant using multiple physiological assays and characterizing the effect of I3P, which likely accumulates in the absence ofipdCand affects bacterial physiology. We found that theipdCmutant derivative has a reduced growth rate and an altered physiology, including reduced translation activity as well as a more depolarized membrane potential compared to the parent strain. Similar effects could be recapitulated in the parent strain by exposing these cells to increasing concentrations of I3P, as well as other indole intermediates of IAA biosynthesis. Our results also indicate a protective role for IAA against the harmful effects of indole derivatives, with exogenous IAA restoring the membrane potential of cells exposed to indole derivatives for prolonged periods. These protective effects appeared to restore cell physiology, including in the wheat rhizosphere. Together, our data suggest that the IAA biosynthesis pathway plays a major role inA. brasilensephysiology by maintaining membrane potential homeostasis and regulating translation, likely to mitigate the potential membrane-damaging effects of indoles that accumulate during growth under stressful conditions.IMPORTANCEIAA is widely synthesized in bacteria, particularly in soil and rhizosphere bacteria, where it functions as a phytohormone to modulate plant root architecture. IAA as a secondary metabolite has been shown to serve as a signaling molecule in several bacterial species, but the role of IAA biosynthesis in the physiology of the producing bacterium remains seldom explored. Results obtained here suggest that IAA serves to protectA. brasilensefrom the toxic effect of indoles, including metabolite biosynthetic precursors of IAA, on membrane potential homeostasis. Given the widespread production of IAA in soil bacteria, this protective effect of IAA may be conserved in diverse soil bacteria.more » « lessFree, publicly-accessible full text available April 23, 2026
-
Reguera, Gemma (Ed.)ABSTRACT Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacteriumAzospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter oftlp2is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.more » « less
-
O'Toole, George (Ed.)ABSTRACT Members of the widely conserved progestin and adipoQ receptor (PAQR) family function to maintain membrane homeostasis: membrane fluidity and fatty acid composition in eukaryotes and membrane energetics and fatty acid composition in bacteria. All PAQRs consist of a core seven transmembrane domain structure and five conserved amino acids (three histidines, one serine, and one aspartic acid) predicted to form a hydrolase-like catalytic site. PAQR homologs in Bacteria (called TrhA, for transmembrane homeostasis protein A) maintain homeostasis of membrane charge gradients, like the membrane potential and proton gradient that comprise the proton motive force, but their molecular mechanisms are not yet understood. Here, we show that TrhA inEscherichia colihas a periplasmic C-terminus, which places the five conserved residues shared by all PAQRs at the cytoplasmic interface of the membrane. Here, we characterize several conserved residues predicted to form an active site by site-directed mutagenesis. We also identify a specific role for TrhA in modulating unsaturated fatty acid biosynthesis with conserved residues required to either promote or reduce the abundance of unsaturated fatty acids. We also identify distinct roles for the conserved residues in supporting TrhA’s role in maintaining membrane energetics homeostasis that suggest that both functions are intertwined and probably partly dependent on one another. An analysis of domain architecture of TrhA-like domains in Bacteria further supports a function of TrhA linking membrane energetics homeostasis with biosynthesis of unsaturated fatty acid in the membrane. IMPORTANCEProgestin and adipoQ receptor (PAQR) family proteins are evolutionary conserved regulators of membrane homeostasis and have been best characterized in eukaryotes. Bacterial PAQR homologs, named TrhA (transmembrane homeostasis protein A), regulate membrane energetics homeostasis through an unknown mechanism. Here, we present evidence linking TrhA to both membrane energetics homeostasis and unsaturated fatty acid biosynthesis. Analysis of domain architecture together with experimental evidence suggests a model where TrhA activity on unsaturated fatty acid biosynthesis is regulated by changes in membrane energetics to dynamically adjust membrane homeostasis.more » « less
-
Maupin-Furlow, Julie A. (Ed.)ABSTRACT Chemotaxis in Bacteria and Archaea depends on the presence of hexagonal polar arrays composed of membrane-bound chemoreceptors that interact with rings of baseplate signaling proteins. In the alphaproteobacterium Azospirillum brasilense , chemotaxis is controlled by two chemotaxis signaling systems (Che1 and Che4) that mix at the baseplates of two spatially distinct membrane-bound chemoreceptor arrays. The subcellular localization and organization of transmembrane chemoreceptors in chemotaxis signaling clusters have been well characterized but those of soluble chemoreceptors remain relatively underexplored. By combining mutagenesis, microscopy, and biochemical assays, we show that the cytoplasmic chemoreceptors AerC and Tlp4b function in chemotaxis and localize to and interact with membrane-bound chemoreceptors and chemotaxis signaling proteins from both polar arrays, indicating that soluble chemoreceptors are promiscuous. The interactions of AerC and Tlp4b with polar chemotaxis signaling clusters are not equivalent and suggest distinct functions. Tlp4b, but not AerC, modulates the abundance of chemoreceptors within the signaling clusters through an unknown mechanism. The AerC chemoreceptor, but not Tlp4b, is able to traffic in and out of chemotaxis signaling clusters depending on its level of expression. We also identify a role of the chemoreceptor composition of chemotaxis signaling clusters in regulating their polar subcellular organization. The organization of chemotaxis signaling proteins as large membrane-bound arrays underlies chemotaxis sensitivity. Our findings suggest that the composition of chemoreceptors may fine-tune chemotaxis signaling not only through their chemosensory specificity but also through their role in the organization of polar chemotaxis signaling clusters. IMPORTANCE Cytoplasmic chemoreceptors represent about 14% of all chemoreceptors encoded in bacterial and archaeal genomes, but little is known about how they interact with and function in large polar assemblies of membrane-bound chemotaxis signaling clusters. Here, we show that two soluble chemoreceptors with a role in chemotaxis are promiscuous and interact with two distinct membrane-bound chemotaxis signaling clusters that control all chemotaxis responses in Azospirillum brasilense . We also found that any change in the chemoreceptor composition of chemotaxis signaling clusters alters their polar organization, suggesting a dynamic interplay between the sensory specificity of chemotaxis signaling clusters and their polar membrane organization.more » « less
-
null (Ed.)Bacterial chemotaxis is the directed movement of motile bacteria in gradients of chemoeffectors. This behavior is mediated by dedicated signal transduction pathways that couple environment sensing with changes in the direction of rotation of flagellar motors to ultimately affect the motility pattern. Azospirillum brasilense uses two distinct chemotaxis pathways, named Che1 and Che4, and four different response regulators (CheY1, CheY4, CheY6, and CheY7) to control the swimming pattern during chemotaxis. Each of the CheY homologs was shown to differentially affect the rotational bias of the polar flagellum and chemotaxis. The role, if any, of these CheY homologs in swarming, which depends on a distinct lateral flagella system or in attachment is not known. Here, we characterize CheY homologs’ roles in swimming, swarming, and attachment to abiotic and biotic (wheat roots) surfaces and biofilm formation. We show that while strains lacking CheY1 and CheY6 are still able to navigate air gradients, strains lacking CheY4 and CheY7 are chemotaxis null. Expansion of swarming colonies in the presence of gradients requires chemotaxis. The induction of swarming depends on CheY4 and CheY7, but the cells’ organization as dense clusters in productive swarms appear to depend on functional CheYs but not chemotaxis per se . Similarly, functional CheY homologs but not chemotaxis, contribute to attachment to both abiotic and root surfaces as well as to biofilm formation, although these effects are likely dependent on additional cell surface properties such as adhesiveness. Collectively, our data highlight distinct roles for multiple CheY homologs and for chemotaxis on swarming and attachment to surfaces.more » « less
-
Petersen, Jillian Michelle (Ed.)ABSTRACT Bacterial chemotaxis affords motile bacteria the ability to navigate the environment to locate niches for growth and survival. At the molecular level, chemotaxis depends on chemoreceptor signaling arrays that interact with cytoplasmic proteins to control the direction of movement. In Azospirillum brasilense , chemotaxis is mediated by two distinct chemotaxis pathways: Che1 and Che4. Both Che1 and Che4 are critical in the A. brasilense free-living and plant-associated lifestyles. Here, we use whole-cell proteomics and metabolomics to characterize the role of chemotaxis in A. brasilense physiology. We found that mutants lacking CheA1 or CheA4 or both are affected in nonchemotaxis functions, including major changes in transcription, signaling transport, and cell metabolism. We identify specific effects of CheA1 and CheA4 on nitrogen metabolism, including nitrate assimilation and nitrogen fixation, that may depend, at least, on the transcriptional control of rpoN , which encodes RpoN, a global regulator of metabolism, including nitrogen. Consistent with proteomics, the abundance of several nitrogenous compounds (purines, pyrimidines, and amino acids) changed in the metabolomes of the chemotaxis mutants relative to the parental strain. Further, we uncover novel, and yet uncharacterized, layers of transcriptional and posttranscriptional control of nitrogen metabolism regulators. Together, our data reveal roles for CheA1 and CheA4 in linking chemotaxis and nitrogen metabolism, likely through control of global regulatory networks. IMPORTANCE Bacterial chemotaxis is widespread in bacteria, increasing competitiveness in diverse environments and mediating associations with eukaryotic hosts ranging from commensal to beneficial and pathogenic. In most bacteria, chemotaxis signaling is tightly linked to energy metabolism, with this coupling occurring through the sensory input of several energy-sensing chemoreceptors. Here, we show that in A. brasilense the chemotaxis proteins have key roles in modulating nitrogen metabolism, including nitrate assimilation and nitrogen fixation, through novel and yet unknown regulations. These results are significant given that A. brasilense is a model bacterium for plant growth promotion and free-living nitrogen fixation and is used as a bio-inoculant for cereal crops. Chemotaxis signaling in A. brasilense thus links locomotor behaviors to nitrogen metabolism, allowing cells to continuously and reciprocally adjust metabolism and chemotaxis signaling as they navigate gradients.more » « less
-
Porto, Carla (Ed.)ABSTRACT The PII family comprises a group of widely distributed signal transduction proteins ubiquitous in prokaryotes and in the chloroplasts of plants. PII proteins sense the levels of key metabolites ATP, ADP, and 2-oxoglutarate, which affect the PII protein structure and thereby the ability of PII to interact with a range of target proteins. Here, we performed multiple ligand fishing assays with the PII protein orthologue GlnZ from the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense to identify 37 proteins that are likely to be part of the PII protein-protein interaction network. Among the PII targets identified were enzymes related to nitrogen and fatty acid metabolism, signaling, coenzyme synthesis, RNA catabolism, and transcription. Direct binary PII-target complex was confirmed for 15 protein complexes using pulldown assays with recombinant proteins. Untargeted metabolome analysis showed that PII is required for proper homeostasis of important metabolites. Two enzymes involved in c-di-GMP metabolism were among the identified PII targets. A PII-deficient strain showed reduced c-di-GMP levels and altered aerotaxis and flocculation behavior. These data support that PII acts as a major metabolic hub controlling important enzymes and the homeostasis of key metabolites such as c-di-GMP in response to the prevailing nutritional status. IMPORTANCE The PII proteins sense and integrate important metabolic signals which reflect the cellular nutrition and energy status. Such extraordinary ability was capitalized by nature in such a way that the various PII proteins regulate different facets of metabolism by controlling the activity of a range of target proteins by protein-protein interactions. Here, we determined the PII protein interaction network in the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense . The interactome data along with metabolome analysis suggest that PII functions as a master metabolic regulator hub. We provide evidence that PII proteins act to regulate c-di-GMP levels in vivo and cell motility and adherence behaviors.more » « less
An official website of the United States government
